Action categorization with modified hidden conditional random field

نویسندگان

  • Jianguo Zhang
  • Shaogang Gong
چکیده

Article history: Received 18 May 2007 Received in revised form 1 October 2008 Accepted 24 May 2009

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Spatio-Temporal Features for Action Recognition with Modified Hidden Conditional Random Field

Previous work on human action analysis mainly focuses on designing hand-crafted local features and combining their context information. In this paper, we propose using supervised feature learning as a way to learn spatio-temporal features. More specifically, a modified hidden conditional random field is applied to learn two high-level features conditioned on a certain action label. Among them, ...

متن کامل

Conditional Random Field for Natural Scene Categorization

Conditional random field (CRF) has been widely used for sequence labeling and segmentation. However, CRF does not offer a straightforward approach to classify whole sequences. On the other hand, hidden conditional random field (HCRF) has been proposed for whole sequences classification by viewing the segment labels as hidden variables. But the objective function of HCRF is non-convex because of...

متن کامل

Heterogeneous Web Data Extraction Algorithm Based On Modified Hidden Conditional Random Fields

As it is of great importance to extract useful information from heterogeneous Web data, in this paper, we propose a novel heterogeneous Web data extraction algorithm using a modified hidden conditional random fields model. Considering the traditional linear chain based conditional random fields can not effectively solve the problem of complex and heterogeneous Web data extraction, we modify the...

متن کامل

Action categorization by structural probabilistic latent semantic analysis

1077-3142/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.cviu.2010.04.006 * Corresponding author. E-mail addresses: [email protected] (J. (S. Gong). Temporal dependency is a very important cue for modeling human actions. However, approaches using latent topics models, e.g., probabilistic latent semantic analysis (pLSA), employ the bag of words assumption therefore word dependencies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010